Consistency of kernel-based quantile regression

نویسندگان

  • Andreas Christmann
  • Ingo Steinwart
چکیده

Quantile regression is used in many areas of applied research and business. Examples are actuarial, financial or biometrical applications. We show that a non-parametric generalization of quantile regression based on kernels shares with support vector machines the property of consistency to the Bayes risk. We further use this consistency to prove that the non-parametric generalization approximates the conditional quantile function which gives the mathematical justification for kernel-based quantile regression. Copyright q 2008 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the strong consistency of the kernel estimator of extreme conditional quantiles

On the strong consistency of the kernel estimator of extreme conditional quantiles. 2014. HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouve...

متن کامل

Semi-parametric Quantile Regression for Analysing Continuous Longitudinal Responses

Recently, quantile regression (QR) models are often applied for longitudinal data analysis. When the distribution of responses seems to be skew and asymmetric due to outliers and heavy-tails, QR models may work suitably. In this paper, a semi-parametric quantile regression model is developed for analysing continuous longitudinal responses. The error term's distribution is assumed to be Asymmetr...

متن کامل

Kernel Quantile Regression for Nonlinear Stochastic Models

We consider kernel quantile estimates for drift and scale functions in nonlinear stochastic regression models. Under a general dependence setting, we establish asymptotic point-wise and uniform Bahadur representations for the kernel quantile estimates. Based on those asymptotic representations, central limit theorems are obtained. Applications to nonlinear autoregressive models and linear proce...

متن کامل

Using Exponentially Weighted Quantile Regression to Estimate Value at Risk and Expected Shortfall

We propose exponentially weighted quantile regression (EWQR) for estimating time-varying quantiles. The EWQR cost function can be used as the basis for estimating the time-varying expected shortfall associated with the EWQR quantile forecast. We express EWQR in a kernel estimation framework, and then modify it by adapting a previously proposed double kernel estimator in order to provide greater...

متن کامل

Improved double kernel local linear quantile regression

As sample quantiles can be obtained as maximum likelihood estimates of location parameters in suitable asymmetric Laplace distributions, so kernel estimates of quantiles can be obtained as maximum likelihood estimates of location parameters in a general class of distributions with simple exponential tails. In this paper, this observation is applied to kernel quantile regression. In so doing, a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006